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The two dimensional electrostatic particle-mesh code is improved in four ways at no 
significant cost in computation. The exact spectrum of the potential periodic in both k- and 
real space is derived. The particle shape is adjusted to reduce the dependence of the particle 
potential on the mesh position. Field errors are halved by using a mesh offset from that used 
during the charge assignment. Non-central forces are reduced by a factor typically about 10 
by modifying the spectrum. 

1. INTR~~IUCTI~N 

Great advances in the accuracy of two dimensional electrostatic particle-mesh 
computations have been made since the earliest nearest-grid-point codes, but each 
advance has been made only at the expense of increasing the computation required. 
The purpose of this paper is to propose several simple improvements to existing codes 
which either need no extra computation at all, or else only affect the initialisation and 
so do not increase the cycle time. The four proposals presented are quite independent 
and they can be used either in conjunction or one at a time. 

The first proposal is to use the exact potential of a system which is periodic in real 
space and in k-space, instead of relying on the approximations used previously. The 
spectrum of the Green’s function is derived in Section 2. The fields and potentials 
acting upon the particles should, as far as possible, depend only on the positions of 
the other particles, and not on the location of the mesh points. The unwanted mesh 
dependence is minimised in Section 3 by a simple adjustment of the parameters of the 
triangular shaped particle. The remaining proposals are concerned with improvements 
to the inter-particle force law in codes which obtain the field by differencing the 
potential array. This is done by a new difference scheme (Section 4) and by 
modification of the spectrum (Section 5). 

2. THE EXACT SPECTRUM OF THE POTENTIAL 

In particle-mesh codes, the charge at each mesh point is obtained from the known 
positions of the particles by a suitable charge-sharing scheme. The potential at these 
same mesh points is then computed from the charge, usually by Fourier transfor- 
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mation in both dimensions. In order to do this, it is necessary to know the Fourier 
transform, S(k, 1), of the Green’s function representing the potential at every mesh 
point, V(x, v), caused by a single particle at the origin. In an inlinite system, 
V(x, -v) = ln(x* + y’), but, once the system is made finite by imposing periodic 
boundary conditions in both directions, V can only be expressed as a complicated 
combination of Jacobi elliptic functions [ 11. Fourier transformation of this result has 
not proved possible and, hitherto, no expression has been available for the spectrum 
S(k, I). Indeed Buneman [2] has pointed out that no expression could yield the 
logarithmic divergence of V at the origin. In consequence, approximations for S have 
had to be used: these have either been based on a truncation of the ideal (k* + I*) -’ 
spectrum, or else on one of the many finite difference representations of the Laplacian 
operator. 

In Section 2.1 we will consider the effect of the discrete mesh and obtain the 
resulting spectrum S,(k, I), and in 2.3 the periodicity in real space will be allowed for 
giving the final spectrum S,(k, I). 

2.1. The Spectrum of a Discrete Potential 

We require that S,(k, 1) reproduce the potential correctly at the mesh points, but is 
unimportant what happens to V between mesh points because such values are never 
used in the calculation. This leaves S, undetermined apart from certain conditions on 
its aliases, but this ambiguity can be resolved as follows. We start with the ideal 
spectrum 

S,(k 1) = (k2 + I*)- ‘, (1) 

which is the transform of ln(x* + u’), and take the mesh interval as our unit of 
length. Then we set V to zero everywhere except at the mesh points by multiplying it 
by the “bed of nails” function 

1 S(x - M) 6( y - N), 
.If.!V 

M, N integers, 

which confounds S, with all of its aliases and gives [3] 

S,(k,Z)= x S,(k + 27rm,Z + 2nn), 
m,n 

m, n integers. (2) 

The summation over one index, say m, can be performed giving a result in terms of 
a cotangent of complex argument [4] 

where b = (I + 2xn(. This expression can be rewritten in a more convenient form as 

S,(k, I) = \’ 
sinh(b) 

y b(4 sinh*(ib) + 4 sin*(fk)) . (3) 
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The spectrum S, can be evaluated directly from (3), but it is more convenient to sum 
it now, rather than to retain an infinite sum throughout the calculation [5], and thus 
obtain a spectrum S, whose periodicity in k and 1 represents the discrete nature of the 
mesh potential. 

2.2. A Series Expansion for S,(k, I) 

The dominant contribution in (3) comes from the term with n = 0, S’,“. First the 
variables ZJ = 4 sin*(+k) and u = 4 sin*@) are introduced, and the denominator is 
expanded, to give 

S;“(k, I) = 
sinh(l) hT 

@ + fJY “TO 

Then the hyperbolic functions are written as series in I*, 

I-’ sinh(l) = 1 t 1*/3! + 14/5! t .a. , 

2 sinh*(+/) = 1*/2! t 14/4! t *. . . 

Finally each power of I* is written in terms of u using 

I2 = (2 arcsin(+u”*))* 

=vt02/12+tI3/90t~*~. 

(54 
(5b) 

(6) 

(Only an outline of the expansion procedure is given here, as a copy of the tabulated 
coefficients and the FORTRAN program used to obtain them is available on request 
from the author.) 

To evaluate the sum over the n # 0 terms, Sy), Eq. (3) is rewritten by using yet 
another form of the complex cotangent [4], and by expanding b-’ in powers of 1, 

S’f”(k, I) = j7 C ‘7 
(-sign(n)/)’ 

Ii’;;, M>O igo m4*+’ * (7) 

The terms in (7) independent of p are just sums over n of reciprocal powers which are 
proportional to the Riemann zeta function [6]. To evaluate the terms in ,B, the series 

V e & 
+nn(2nn)-A- I, 

n>O 

which converge very rapidly, are summed numerically. The resulting series in t’ is 
then multiplied by the expansion of e-@‘. Adding in the contribution from the 
negative n values cancels terms of odd order in 1. Thus we obtain a result of the form 

Sl”‘(k, 1) = c F,, cos(,uk) I’.‘. 
WA 

(9) 
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The only coefficient that appears to cause any problem here is F,,, which is 
logarithmically divergent. However, this is the very term in S,(k, I) which is 
independent of k and I, and so it represents the transform of the value of the potential 
V at the origin. No wonder then that F,, is infinite. In any practical computer code, 
V(O,O) has to be reduced to a more manageable value, so F,,, is left as a free 
parameter y to be determined at the user’s discretion. 

Expansion (9) is next converted into a series in u (using the recurrence relation for 
cosines of multiple angles and cos k = 1 - 4~) and u (using Eq. (6)). At this stage the 
combination of S\” and ,I$“’ is a rather lobsided function of u and L’, although 
numerically it is symmetric in these variables. We therefore average by interchanging 
k and 1. 

S,(k, I) = ;(Sy’(k, Z) + S;“(l, k) + S;“‘(k, I) + $“‘(I, k)), 

which permits a further transformation to symmetrised variables p = u + L! and 
q = uv/(u + v). This allows cancellation of the inverse powers of p in Eq. (4) and the 
final result is then 

S,(k, 0 = p-l 2 G,,&f, 
Il.3 

where G,, is the free parameter y mentioned above. The lowest order coefficients G,, 
are given in Table I, but an explicit Padl approximant is 

S,(k,l)=p-’ 
i 

1 + 0.5054P + 0.0754P2 + 0.0008P3 
1 - 0.1587P 1 

’ (l- (+-;) 1 +&;;~;.;634p?)-” (“) 

where P = p/8. This expression provides a more economic way of computing S, than 
the power series (lo), and it is accurate to better than 10e4 over any part of its range. 

The question might be asked, Was the transformation from the variables u and 1, 
which appeared naturally, worth the effort? We require a spectrum which is periodic 
in I, but no finite Taylor series of the form (9) can give periodic behaviour. By 
converting from I to u (which is a sinusoidal function of I), we automatically get a 
periodic S, even with a truncated Taylor series. The final choice of variables, p and 
q, is justified by the more economic form of the series, and by their physical meaning: 
when p is small, p is the square of the wave vector, k* + I’, and q/p gives a purely 
angular dependence (1 - cos 40)/8. 

2.3. The Spectrum of a Periodic Potential 

The final stage of the analysis is to allow for the periodicity in V(x, y). The 
spectrum then becomes 

(12) 
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where m and n are integers and L is the periodic length. Overall charge neutrality in 
the periodic system is ensured by setting S,(O, 0) = 0. This completes the Fourier 
transformation of the mesh potential: although the combination of elliptic functions 
could not be transformed directly, we have achieved the same result by starting with 
the ideal logarithmic potential and summing the aliases in k-space. 

2.4. Comparison with Alternative Spectra 

We shall now consider the various approximations to S, that have been proposed. 
The list is meant to be exhaustive of all the schemes that have been described in this 
Journal (and one extra scheme is thrown in for good measure), but no attempt has 
been made to be exhaustive regarding their authorship, as several approximations 
have been proposed more than once. The schemes are presented in order of increasing 
complexity. They are all accurate when k and 1 tend to zero, but a comparison of the 
coefficients G,, in Table I shows that some large discrepancies will occur at larger 
wavenumber. To estimate the overall accuracy the maximum difference from the 
exact S, is given in Table II (this usually but not invariably occurred at (x, n)). 

Eastwood and Hackney ] 1 ] discuss three proposals, the simplest one being to base 
the spectrum on the usual live point difference formula for the Laplacian operator. 
The spectrum which results from this is 

s, = p-1. (13) 

Here all the G,, coefficients, apart from G,, and G,,, are zero. The diagonal version 
of the five point formula [ 1 ] yields 

s, = p-‘(1 -p/8)(1 -q/2)-‘. (14) 

We see from Table I that this is a poorer choice because the coefficients are too large, 
and in particular the dependence on q is much too strong. 

By combining the five point schemes, nine point schemes may be generated. The 
version of Lewis and Nielson [7], 

s, = p-I(1 -q/3)-‘, (15) 

is based on a template which emphasises the diagonal form of the V2 operator, and 
the table shows that once again the coefficients are too large. A consideration of the 
G,, term would suggest that a better nine point scheme would be made by combining 
the axial and diagonal operators in the ratio 2 to 1, and this is what the next two 
authors use. 

Buneman’s scheme (21 gives 

S, = p-‘(1 -q/6)-‘, (16) 
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and now all the G,, terms are correct, although the other coefficients are all zero. 
Buneman in fact specified y = -l/12, but as discussed in Section 2.2 above, the 
choice of y is arbitrary. The classic nine point formula gives Eq. (16) with y = 0 and 
so it is represented by the same line in Table I. Eastwood and Hackney [ 1 ] obtain a 
slightly different operator, which gives 

S, =p+(l -p/12)(1 -q/6)-‘. (17) 

The nine point extended axis form of the Laplacian [8] could also be used to 
generate a spectrum: 

S, = p-*(1 + p/12 -q/6)-‘. (18) 

It is interesting to note that each of the schemes (16), (17), (18) contains an effective 
constant term y of -l/ 12. When it appears explicitly (16) it is harmless, but 
otherwise it introduces extra terms into the power series which all have the wrong 
sign. It is clear that the considerations in numerical analysis about the properties of 
the finite difference approximations to the Laplacian, which called for this term 
-l/12, are not appropriate to the problem of modelling S, . 

Finally, in this category we consider the 25 point scheme devised by Lewis [9, lo], 
which has spectrum 

S, = p-‘(1 -p/8 + pq/64)*(1 -p/6 -q/6 + pq/20 -pq*/360)-‘. (19) 

Now the coefftcient G,, is very close to its required value (and G,, are all correct), 
but there are still several discrepancies in the table. 

TABLE II 

Comparative Performances 

Name Eq. AS% AV% Fluct.% 

5 point 
Diagonal 
9 point [2] 
9 point [7] 
9 point [ 11 
9 point axial 
25 point 
Poor Man 
Truncated 
Pade 

& offset mesh 
& particle shape 
& improved force 

(13) 6.86 4.1 

(141 8.33 4.1 

(15) 18.14 9.8 

(16) 0.61 0.47 

(171 4.78 3.0 

(18) 1.65 2.1 

(19) 6.55 2.6 

(20) 3.34 3.1 

PO) 19.35 7.8 

(11) 0.006 0.012 

0.55 
0.46 
0.72 
0.47 
0.41 
0.47 
0.47 
0.38 
0.39 
0.22 
0.117 
0.107 
0.098 

Note. The column dS shows the maximum deviation from the exact spectrum. The error in the 
resulting potentials are shown in column AV. The final column gives the energy fluctuation level for each 
spectrum and for the other recommendations of this paper. 
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An alternative to this approach is Boris’ “Poor Man’s Poisson Solver” [ 111: 

s, = (k2 + r’>- l 
= p-‘(l + p/12 -q/6 +p2/90 - Pq/30 + . ..)-I. (20) 

As far as the power series is concerned, this wins hands down by getting five coef- 
ficients correct, However, its performance at large wave number is poor as it does not 
give the required zero gradient at k or I = rc which all the other schemes provide. An 
attempt is often made to circumvent this problem by truncating the spectrum (20), for 
instance, by setting S, = 0 if k* + 1’ > X, but the resulting step in S, is not realistic. 

The problem is that we are trying to model the Fourier transform of a continuous 
function, and so the domain of S never terminates. Once we restrict our attention to 
the potential at the mesh points, then three options are open to us: we can use the 
ideal spectrum S, and include the region beyond fn by explicitly summing the 
aliases (Eq. (2)); or we can use the Poor Man’s philosophy and arbitrarily cut off S, 
at fn (or indeed at any smaller wavenumber) recognising that we will not then be 
able to reproduce V correctly; or we can let someone else perform the aliasing for us 
once and for all and use a spectrum S, that does terminate at *n. All the approx- 
imations, (1 l), (13)-( 19), do this, so it is a matter of selecting the one with the most 
desirable properties. An overall comparison will be made in Section 6, but on the 
basis of the G coeflicients and the maximum error AS, the Pade approximant (11) is 
the first choice, with Buneman’s nine point formula (16) as runner up. 

2.5. Accuracy of the Potential 

As a further test of the various spectra, each one has been Fourier transformed on 
a 64 x 64 mesh and the resulting Green’s function has been compared with the exact 
periodic potential [1] at each mesh point. The peak errors, expressed as percentages 
of the value of V(1, 0) when the mean value of V over the mesh is zero, are given in 
Table II. Once again Eqs. (11) and (16) come first and second in accuracy. 

3. THE OPTIMUM TRIANGULAR SHAPED PARTICLE 

Eastwood and Hackney [l] discuss charge assignment schemes of different order, 
and show how improved performance is achieved by sharing the charge over a 
greater number of mesh points. Of course the improvement is only obtained at the 
expense of more computation, so it is a moot point which order to take. We show 
here that a significant improvement can be made to their recommended TSC scheme 
without involving any more computation. 

The TSC scheme assigns the charge of each particle to the nine adjacent mesh 
points m’, n’ by a biquadratic weighting function w(m’; m, x) w(n’; n, y), where m 
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and n are the nearest integers to the particle coordinates m + x and n + y. The 
function w distributes the charge onto the three nearest integers in the proportions 

w(m- l;m,x)=+(c-xi-x’), 

w(m;m,x)= 1 -c--x*, (21) 

w(m+ l;m,x)=~(c+x+x2). 

The constant c was taken to be $ as this gives the quadratic spline profile. It is also 
the natural choice if the TSC is considered as the convolution of two top hat cloud- 
in-cell functions. There is, however, no real necessity to take c = $ and we now 
investigate alternative choices. We consider three different criteria in the following 
subsections. 
3.1. Minimal Distortion in k-Space 

As the weighting function in two dimensions is the product of one dimensional 
functions (21), the effect on the Fourier harmonics is similarly the product of factors 
for each direction. In place f(k,x) = exp(ik(m + x)) for a particle at m +x, the 
distributor w gives 

g(k, x) = (1 + ix sin k + (c + x’)(cos k - 1)) exp(ikm). (22) 

The effect of the finite particle size is to degrade the k harmonic in the ratio g/J If we 
average over all particle positions we obtain 

(g/f) = sin3($k)(8ke3 + k-’ - 4ck-‘). (23) 

This is a generalisation of the result sinc3($k) obtained by several authors for the case 
c=$ 

We note that (g/f) falls off as k increases, and we could try to compensate for this 
by reducing c. The choice which keeps (g/f) as close as possible to 1 in a least 
squares sense over the whole range of k is c = -0.15. However, we do not 
recommend this choice (which magnifies the high frequency noise) for the following 
reason. The harmonics are not built up to average contributions (g/f) but actual 
contributions g(x)/f(x). What we ought to be doing is to try to keep g/constant as x 
varies, because the whole purpose of spreading the charge out over several mesh 
points is to try to make the force independent of the location of the mesh (see Section 
3.3 below). 

3.2. Minimal Distortion in Real Space 

To assess how well the TSC distributor w follows different functions (potential, 
field or whatever), we can do a Taylor expansion about the point x = m and look at 
each power in turn. In place of x’, we get 

x w(m’; m, x) m” = 1, for t = 0, 
rn’ 

= x, for t odd, (24) 

= c + x2, for t non-zero even. 
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Thus the constant and linear terms are followed exactly, the quadratic is followed but 
with a constant discrepancy c, and the higher terms are not reproduced properly. If 
our criterion were to choose the TSC scheme which distorts the function as little as 
possible, we would have to choose c = 0. The particle shape would then be the 
standard (TSC) triangle of height 1 and base 2, with the addition of a-functions 
(nearest-grid-point contributions) with strength -i at the edges and +a at the apex. 
This choice is analogous to the subtracted dipole scheme [ 121, which is motivated by 
similar considerations. In that scheme, a rectangular particle shape of height 4 and 
base 2, having weighting function w shown in Fig. 10 of [ 121, is modified by S- 
functions, -$ at the edges and +4 at the centre, to give w as in Fig. 9. 

3.3. Independence of the Mesh Position 

However, we are not really worried about constant discrepancies: we could 
compensate for them by an alteration of the function we are trying to follow, i.e., by 
weighting the spectral components as discussed in Section 5 below. What is much 
more important is to choose c to minimise the dependence of the inter-particle 
potential (and hence force) on the location of the particles with respect to the mesh. 
A rather tedious piece of algebra shows that the constant and linear components of 
the inter-particle potential are reproduced correctly by the distributor, and so is the 
quadratic term apart from a constant discrepancy 2c, which does not affect the forces 
between particles. In place of the cubic term (m +x--X)~ in the interaction of 
particles at m + x and 0 +X, we have 

A, = m3 + 6mc + (3m2 + 1 + 3c)(x -X) + 3m(x -X)’ + 3(xX2 - x2X). 

This is made up of the desired cubic term, a linear term 6c(m +x-X) which is 
removable by the modification of the spectrum, and an error term 

A;=(&3c)(x-X)-(x3-X3). 

This final term represents an unwanted dependence on the absolute positions of the 
particles within the cells of the mesh. It is minimised by choosing c = 17/60 giving a 
mean square noise level 

m 

I 1 
l/2 

A;‘dxdX= 3.19 x 1O-4 
l/2 - I2 

compared with 2.94 x 10e3 for c = d and a very noisy 0.122 at c = 0. 
We conclude that the simple change of c from l/4 to 17/60 cuts the rms noise level 

to less than a third. The particle shape is then the triangle plus l/60 a-functions at the 
edges minus a l/30 d-function at the apex. With c = 17/60 there is a very small 
discontinuity in the force when a particle crosses a cell boundary, but its amplitude 
depends only on the fourth derivative of the potential and its harmful effect is more 
than offset by the overall reduction in the noise level. 
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4. A DIFFERENCE SCHEME ON AN OFFSET MESH 

The proposals in Sections 4 and 5 are applicable when, as is usual, the electric 
fields at each mesh point are generated from the potentials V(m, n) by a difference 
scheme of the form 

E,(m, n) = +[ qm + 1, n) - I+ - 1, n)], (26) 

the mesh interval being unity. Acting on the logarithmic potential V = In r2, this gives 
(to order r-‘) a radial field E,= 2r-’ + ;r-’ cos 48, and an azimuthal field 
E, = --fr-3 sin 48. An improvement can be made by relaxing the usual restriction 
that a single mesh be used throughout the computation: we show how that this halves 
the error in the field. 

Let the charge of each particle be assigned to the mesh points and the potentials be 
deduced in the usual way. Then, when calculating the fields that each particle sees, 
distribute the charge to the nine nearest centres of the cells instead of the nearest cell 
corners; i.e., let m, n, m’, n’ be half integers in Eq. (21). We may then use the 
formulae 

EAm,n)=E+ +E-, 

E,(m, n> = E, -E-, (27) 

where 

E,(m,n)=t[V(m+~,n*~)- V(m-i,nri)j. 

This gives E, = 2r-’ - ire3 cos 48 and E, = +irP3 sin 48, so that the errors have 
been halved. 

Further improvements are possible, but these would need increased computational 
effort, so they do not fall within the scope of this paper. A particularly attractive idea 
be to add the results of (26) and (27) in the proportions f and $ as then the leading 
error term in E, falls to +(1/15) r-’ sin 46’. 

Lest there should be any misconception, the use of the offset mesh is not the same 
as the interlacing [3] used to reduce aliases during the Fourier transformation. In that 
method, several meshes are used consecutively to give the effect of a finer mesh 
without any extra storage space being needed, but here we just have one mesh, albeit 
displaced from its original position. 

Only one problem arises with the use of (27): we do not have exact momentum 
conservation and so the self-induced field seen by the particles is not automatically 
zero ] 13, 14). The discrepancy is small and its mean value is zero, but its exact value 
depends on the potential at the mesh points near the origin hand hence on the 
arbitrary constant y. By selecting y to make V(0, 0) equal to V(1, 0), the error field is 
reduced to <$% of the field at one mesh interval. This is considerably less than the 
unavoidable noise arising in the interaction between pairs of particles. 
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5. IMPROVEMENT OF THE INTER-PARTICLE FORCE 

The spectrum can be adjusted to improve the force between particles except when 
the particles get very close together. Buneman [2] used a factor which made his 
charge sharing scheme equivalent to a quadratic spline fitting. However, the purpose 
of our correction will be to reduce the effect of errors introduced by the finite 
difference scheme. 

The goal used in this paper is to reduce E,(r) to zero and to ensure that 
(27r)’ J E,(r) dt? = 2/r. Thus we are aiming for a purely central force with the correct 
mean strength. Unfortunately any improvement to E, makes E, worse and vice versa, 
and this is the reason why we recommend using the offset mesh (Section 4) so as to 
start from as good a position as possible. A similar technique could be used if we 
preferred to make E, independent of 13 at the expense of a larger non-central com- 
ponent. 

We can avoid a complicated calculation over the mesh structure by first finding the 
effect of the difference operator on a continuous logarithmic potential, and then 
introducing the effect of the aliases. The spurious azimuthal field arising from the 
logarithmic potential is 

E, = & f sin(B + $71) ln(h2 - 2hr cos(8 + fL7c) + r*), 
*‘rr, 

where 8 is taken to be zero along one of the difference vectors h used in the difference 
scheme. With the conventional scheme h is the mesh interval unity, but using the 
offset mesh h is x2-“* smaller. By resolving E, into its harmonic components, we 
find that E, is the derivative of a potential 

r* ___- 
h2(4v + 1) 1 

cos 4ve, r< h, 

1 

-- 1 
(29) 

4v + 1 
cos 4ve, r > h. 

This result is exact: if the approximation for E, in Section 4 had been used in its 
derivation, a much less tractable result would have been obtained. 

The Hankel transform of U(r) is 

B,(k)= -T 
8 

42 J4,,(kh) cos 4ve, 
t’, k h 

and this sum over harmonic components can be performed to give 

B,(k) =A [cos(k . h) -I cos(k x h) - Zl,,(kh)j. (31) 
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The radial field is calculated in a similar way and we find that there is no need to 
correct for the error in j E, d6’ as this is identically zero for all r >, h. We thus correct 
for the spurious E, by subtracting B, from S,(k). 

Nothing can be done to improve the mesh-calculated force for separations less than 
h, SO for small h we obtain a very simple result, 

B,(k) = $ cos 48. 

Thus the correcting potential depends only on the direction of k, not on its 
magnitude, except for the point k = 0, where it is not analytic. Allowing for aliases 
and transforming to the periodic variables p and q gave a Pade approximant for B, . 
A one term approximant is nearly as good as more complicated expressions (because 
of the smearing out caused by the finite particle size), so we recommend a correction 

l.lh*q 
B,(k)=--- 

6~ 

to be added to S,(k) when the offset mesh is used, and subtracted with the conven- 
tional mesh. The factor 1.1 was chosen empirically to compensate for the particle 
size. The effect of this B, is to reduce the non-central force by a factor of between 3, 
at short distances (v < 4), and 10 or more, at larger separations. If it is desired to 
eliminate aE,/S’ rather than E,, then the sign of B, should be reversed. 

6. CONCLUSION 

The purpose of this paper has been to show that significant improvements can be 
made to the performance of the particle-mesh code, without incurring extra 
computation. The four proposals are easy to implement and can be adopted as a 
group or singly (for instance, the modified particle shape is also the ideal choice for 
three dimensional codes). Similarly in codes which form gradients in k-space and 
prepare separate arrays for E, and E,,, the results of Section 3 are still applicable and 
techniques analogous to those in Sections 2 and 5 could be devised. 

The degrees of improvement obtainable with each proposal were discussed in the 
appropriate sections above, and their overall usefulness has been assessed by 
measuring the energy fluctuation level in the simulation of a guiding-centre plasma. 
The Pade approximant (11) gives a 0.22% fluctuation level, which is less than that 
given by any of the alternative spectra (see Table II), the Poor Man formula being 
runner up in this test. Clearly the proper spectrum (11) is the one to use, but the 
approximation which is the safest alternative (the one that does least badly over the 
whole set of tests) is Hackney’s nine point scheme (17). 

The other recommendations in this paper reduce the fluctuation level further. 
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Changing to the offset mesh brings down the fluctuation level to 0.117%, and altering 
the particle shape to c = 17/60 further reduces it to 0.107%. Finally the modification 
to the spectrum (33) gives a level of 0.098%. 

Once the restriction to cheap improvements is lifted, then more radical changes to 
the existing codes become possible: for instance, Eastwood has considered the 
optimal design of a one dimensional code [S J and in three dimensions has recom- 
mended a four point difference scheme [ 15 1. The present paper should be considered 
as complementary rather than alternative to that approach. After all, proposals of the 
kind discussed here can be applied to codes of any degree of sophistication, and it is 
the author’s opinion that most practitioners would prefer to sharpen their familiar 
tools rather than feel obliged to buy new ones. 
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